專升本/專轉(zhuǎn)本/專接本
當(dāng)前位置: 易學(xué)仕在線> 考試資訊> 報(bào)考> 大綱> 湖北> 2020年湖北文理學(xué)院普通專升本《高等數(shù)學(xué)》考試大綱

2020年湖北文理學(xué)院普通專升本《高等數(shù)學(xué)》考試大綱

發(fā)布時間:2020/07/09 10:51:53 來源:易學(xué)仕專升本網(wǎng) 閱讀量:1536

摘要:2020年湖北文理學(xué)院普通專升本《高等數(shù)學(xué)》考試大綱

一、基本要求:

考生應(yīng)按本大綱的要求,了解或理解“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、向量代數(shù)與空間解析幾何、多元函數(shù)微積分學(xué)、無窮級數(shù)、常微分方程的基本概念與基本理論;學(xué)會、掌握或熟練掌握上述各部分的基本方法。應(yīng)注意各部分知識的結(jié)構(gòu)及知識的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力、空間想象能力;有運(yùn)用基本概念、基本理論和基本方法正確地推理證明,準(zhǔn)確地計(jì)算;能綜合運(yùn)用所學(xué)知識分析并解決簡單的實(shí)際問題。

本大綱對內(nèi)容的要求由低到高,對概念和理論分為“了解”和“理解”兩個層次;對方法和運(yùn)算分為“會”、“掌握”和“熟練掌握”三個層次。

二、考試方法和時間:

考試方法為閉卷考試,考試時間為90分鐘。

三、考試題型大致比例:

選擇題:100%,試卷滿分:100分。

四、考試內(nèi)容和要求:

 

第一章  函數(shù)、極限和連續(xù)

(一)函數(shù)

考試內(nèi)容:

1)函數(shù)的概念:函數(shù)的定義    函數(shù)的表示法    分段函數(shù);

2)函數(shù)的簡單性質(zhì):單調(diào)性    奇偶性    有界性    周期性;

3)反函數(shù):反函數(shù)的定義    反函數(shù)的圖象;

4)函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算;

5)基本初等函數(shù):冪函數(shù) 指數(shù)函數(shù) 對數(shù)函數(shù) 三角函數(shù)  反三角函數(shù);

6)初等函數(shù)。

考試要求:

1)理解函數(shù)的概念,會求函數(shù)的定義域、表達(dá)式及函數(shù)值;會求分段函數(shù)的定義域、函數(shù)值,并會做出簡單的分段函數(shù)圖象;

2)理解和掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性,會判斷所給函數(shù)的類別;

3)了解函數(shù)y=?x)與其反函數(shù)y=?-1x)之間的關(guān)系(定義域、值域、圖象),會求單調(diào)函數(shù)的反函數(shù);

4)理解和掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算,熟練掌握復(fù)合函數(shù)的復(fù)合過程;

5)掌握基本初等函數(shù)的簡單性質(zhì)及其圖像象;

6)了解初等函數(shù)的概念;

7)會建立簡單實(shí)際問題的函數(shù)關(guān)系式。

(二)極限

考試內(nèi)容:

1)數(shù)列極限的概念:數(shù)列    數(shù)列極限的定義;

2)數(shù)列極限的性質(zhì):唯一性  有界性  四則運(yùn)算定理  夾逼定理  單調(diào)有界數(shù)列  極限存在定理;

3)函數(shù)極限的概念:函數(shù)在一點(diǎn)處極限的定義  左、右極限及其與極限的關(guān)系x趨于無窮(x→∞,x+∞,x-∞)時函數(shù)的極限  函數(shù)極限的幾何意義;

4)函數(shù)極限的定理:唯一性定理    夾逼定理    四則運(yùn)算定理;

5)無窮小量和無窮大量:無窮小量與無窮大量的定義  無窮小量與無窮大量的關(guān)系  無窮小量與無窮大量的性質(zhì)  兩個無窮小量階的比較;

6)兩個重要極限

              

基本要求:

1)理解極限的概念(對極限定義中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根據(jù)極限概念分析函數(shù)的變化趨勢。會求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件;

2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則;

3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系  會進(jìn)行無窮小量階的比較(高階、低階、同階和等階)  會運(yùn)用等價(jià)無窮小量代換求極限;

4)熟練掌握用兩個重要極限求極限的方法。

(三)連續(xù)

考試內(nèi)容:

1)函數(shù)連續(xù)的概念:函數(shù)在一點(diǎn)連續(xù)的定義  左連續(xù)和右連續(xù)  函數(shù)在一點(diǎn)連續(xù)的充分必要條件  函數(shù)的間斷點(diǎn)及其分類;

2)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì):連續(xù)函數(shù)的四則運(yùn)算 復(fù)合函數(shù)的連續(xù)性  反函數(shù)的連續(xù)性;

3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性定理  最大值和最小值定理  介值定理(包括零點(diǎn)定理);

4)初等函數(shù)的連續(xù)性。

基本要求:

1)理解函數(shù)在一點(diǎn)連續(xù)與間斷的概念,掌握判斷簡單函數(shù)(含分段函數(shù))在一點(diǎn)的連續(xù)性,理解函數(shù)在一點(diǎn)連續(xù)與極限存在的關(guān)系;

2)會求函數(shù)的間斷點(diǎn)及確定其類型;

3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會運(yùn)用介值定理推證一些簡單命題;

4)理解初等函數(shù)在其定義區(qū)間上連續(xù),并會利用連續(xù)性求極限。

第二章  一元函數(shù)微分學(xué)

(一)導(dǎo)數(shù)與微分

考試內(nèi)容:

1)導(dǎo)數(shù)概念:導(dǎo)數(shù)的定義  左導(dǎo)數(shù)與右導(dǎo)數(shù)  導(dǎo)數(shù)的幾何意義與物理意義  可導(dǎo)與連續(xù)的關(guān)系;

2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式:導(dǎo)數(shù)的四則運(yùn)算  反函數(shù)的導(dǎo)數(shù)  導(dǎo)數(shù)的基本公式;

3)求導(dǎo)方法:復(fù)合函數(shù)的求導(dǎo)法  隱函數(shù)的求導(dǎo)法  對數(shù)求導(dǎo)法  由參數(shù)方程確定的函數(shù)的求導(dǎo)法  求分段函數(shù)的導(dǎo)數(shù);

4)高階導(dǎo)數(shù)的概念:高階導(dǎo)數(shù)的定義  高階導(dǎo)數(shù)的計(jì)算;

5)微分:微分的定義  微分與導(dǎo)數(shù)的關(guān)系  微分法則  一階微分形式不變性。

基本要求:

1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù);

2)會求曲線上一點(diǎn)處的切線方程與法線方程;

3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則以及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù);

4)掌握隱函數(shù)的求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù);

5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù);

6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。

(二)中值定理及導(dǎo)數(shù)的應(yīng)用

考試內(nèi)容:

1)中值定理:羅爾(Rolle)中值定理  拉格朗日(Lagrange)中值定理;

2)洛必達(dá)(L’Hospital)法則;

3)函數(shù)增減性的判定法;

4)函數(shù)極值與極值點(diǎn)  最大值與最小值;

5)曲線的凹凸性、拐點(diǎn);

6)曲線的水平漸近線與垂直漸近線。

考試要求:

1)了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明簡單的不等式;

2)熟練掌握洛必達(dá)法則求0/0”、“∞/ ∞”、“0?∞”、“∞-∞”、“1”、“00”和“∞0”型未定式的極限方法;

3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式;

4)理解函數(shù)極值的概念,掌握求函數(shù)的極值和最大(?。┲档姆椒?,并且會解簡單的應(yīng)用問題;

5)會判定曲線的凹凸性,會求曲線的拐點(diǎn);

6)會求曲線的水平漸近線與垂直漸近線;

7)會作出簡單函數(shù)的圖形。

第三章  一元函數(shù)積分學(xué)

(一)不定積分

考試內(nèi)容:

1)不定積分的概念:原函數(shù)與不定積分的定義  原函數(shù)存在定理  不定積分的性質(zhì);

2)基本積分公式;

3)換元積分法:第一換元法(湊微分法)  第二換元法;

4)分部積分法;

5)一些簡單有理函數(shù)的積分。

基本要求:

1)理解原函數(shù)與不定積分概念及其關(guān)系,掌握不定積分性質(zhì),了解原函數(shù)存在定理;

2)熟練掌握不定積分的基本公式;

3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換);

4)熟練掌握不定積分的分部積分法;

5)會求簡單有理函數(shù)的不定積分。

(二)定積分

考試內(nèi)容:

1)定積分的概念:定積分的定義及其幾何意義  可積條件;

2)定積分的性質(zhì);

3)定積分的計(jì)算:變上限的定積分  牛頓一萊布尼茨(Newton - Leibniz)公式  換元積分法  分部積分法;

4)無窮區(qū)間的廣義積分;

5)定積分的應(yīng)用:平面圖形的面積  旋轉(zhuǎn)體的體積  物體沿直線運(yùn)動時變力所作的功。

基本要求:

1)理解定積分的概念與幾何意義,了解可積的條件;

2)掌握定積分的基本性質(zhì);

3)理解變上限的定積分是變上限的函數(shù),掌握對變上限定積分求導(dǎo)數(shù)的方法;

4)掌握牛頓萊布尼茨公式;

5)掌握定積分的換元積分法與分部積分法;

6)理解無窮區(qū)間廣義積分的概念,掌握其計(jì)算方法;

7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積;會用定積分求沿直線運(yùn)動時變力所作的功。

第四章  向量代數(shù)與空間解析幾何

(一)向量代數(shù)

考試內(nèi)容:

1)向量的概念:向量的定義  向量的模  單位向量  向量在坐標(biāo)軸上的投影

    向量的坐標(biāo)表示法  向量的方向余弦;

2)向量的線性運(yùn)算:向量的加法  向量的減法  向量的數(shù)乘;

3)向量的數(shù)量積二向量的夾角  二向量垂直的充分必要條件;

4)二向量的向量積  二向量平行的充分必要條件。

基本要求:

1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影;

2)掌握向量的線性運(yùn)算、向量的數(shù)量積與向量積的計(jì)算方法;

3)掌握二向量平行、垂直的條件。

(二)平面與直線

考試內(nèi)容:

1)常見的平面方程:點(diǎn)法式方程  一般式方程;

2)兩平面平行的條件  兩平面垂直的條件  點(diǎn)到平面的距離;

3)空間直線方程:標(biāo)準(zhǔn)式方程(又稱對稱式方程或點(diǎn)向方程) 一般式方程  參數(shù)式方程;

4)兩直線平行的條件  兩直線垂直的條件  直線在平面上的條件。

基本要求:

1)會求平面的點(diǎn)法式方程、一般式方程。會判定兩平面的垂直、平行;

2)會求點(diǎn)到平面的距離;

3)了解直線的一般式方程,會求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程會判定兩直線平行、垂直;

4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。

(三)簡單的二次曲面

考試內(nèi)容:

球面  母線平行于坐標(biāo)軸的柱面  旋轉(zhuǎn)拋物面  圓錐面  橢球面;

基本要求:

了解球面、母線平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。

第五章  多元函數(shù)微積分

(一)多元函數(shù)微分學(xué)

考試內(nèi)容:

1)多元函數(shù):多元函數(shù)的定義  二元函數(shù)的定義域  二元函數(shù)的幾何意義  

二元函數(shù)極限與連續(xù)的概念;

2)偏導(dǎo)數(shù)與全微分:偏導(dǎo)數(shù)  全微分  二階偏導(dǎo)數(shù);

3)復(fù)合函數(shù)的偏導(dǎo)數(shù);

4)隱函數(shù)的偏導(dǎo)數(shù);

5)二元函數(shù)的無條件極值及條件極值。

基本要求:

1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義及二元函數(shù)的極限與連續(xù)概念(對計(jì)算不作要求)。會求二元函數(shù)的定義域;

2)理解偏導(dǎo)數(shù)概念,了解全微分概念,知道全微分存在的必要條件與充分條件;

3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法;

4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法;

5)會求二元函數(shù)的全微分;

6)掌握由方程Fxy,z=0所確定的隱函數(shù)z=zxy)的一階偏導(dǎo)數(shù)的計(jì)算方法;

7)會求二元函數(shù)的無條件極值及條件極值。

(二)二重積分

考試內(nèi)容:

1)二重積分的概念:二重積分的定義  二重積分的幾何意義;

2)二重積分的性質(zhì);

3)二重積分的計(jì)算;

4)二重積分的應(yīng)用。

基本要求:

1)理解二重積分的概念及其性質(zhì);

2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法;

3)會用二重積分解決簡單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。

(三)第一類曲線積分與第二類曲線積分

考試內(nèi)容:

第一類曲線積分與第二類曲線積分的概念及其計(jì)算方法;

格林(Green)公式;

平面曲線積分與路徑無關(guān)條件。

基本要求:

1)理解第一類曲線積分與第二類曲線積分的概念及其性質(zhì);

2)掌握第一類曲線積分與第二類曲線積分的計(jì)算方法;

3)掌握格林(Green)公式;

4)掌握平面曲線積分與路徑無關(guān)條件。


第六章  無窮級數(shù)

(一)數(shù)項(xiàng)級數(shù)

考試內(nèi)容:

1)數(shù)項(xiàng)級數(shù):數(shù)項(xiàng)級數(shù)的概念  級數(shù)的收斂與發(fā)散  級數(shù)的基本性質(zhì)  級數(shù)收斂的必要條件;

2)正項(xiàng)級數(shù)斂散性的判別法:比較判別法  比值判別法;

3)任意項(xiàng)級數(shù):交錯級數(shù)  絕對收斂  條件收斂  萊布尼茨判別法。

考試要求:

1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì);

2)掌握正項(xiàng)級數(shù)的比值判別法。會用正項(xiàng)級數(shù)的比較判別法;

3)掌握幾何級數(shù)、調(diào)和級數(shù)級數(shù)的收斂性;

4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。

(二)冪級數(shù)

考試內(nèi)容:

1)冪級數(shù)的概念:收斂半徑  收斂區(qū)間;

2)冪級數(shù)的基本性質(zhì);

3)將簡單的初等函數(shù)展開為冪級數(shù)。

考試要求:

1)了解冪級數(shù)的概念;

2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分);

3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法;

4)會運(yùn)用,,,的麥克勞林(Maclaurin)公式,將一些簡單的初等函數(shù)展開為的冪級數(shù)。

第七章  常微分方程

(一)一階微分方程

考試內(nèi)容:

1)微分方程的概念:微分方程的定義      通解  初始條件  特解;

2)可分離變量的方程;

3)一階線性方程。

考試要求:

1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解;

2)掌握可分離變量方程的解法;

3)掌握一階線性方程的解法。

(二)可降價(jià)方程

考試內(nèi)容:

1型方程     

2型方程

 考試要求:

1)會用降價(jià)法解型方程

2)會用降價(jià)法解型方程

(三)二階線性微分方程

考試內(nèi)容:

1)二階線性微分方程解的結(jié)構(gòu)

2)二階常系數(shù)齊次線性微分方程

3)二階常系數(shù)非齊交線性微分方程

考試要求:

1)了解二階線性微分方程解的結(jié)構(gòu)。

2)掌握二階常系數(shù)齊次線性微分方程的解法。

3)掌握二階常系數(shù)非齊次線性微分方程的解法(自由項(xiàng)限定為,其中次多項(xiàng)式。為實(shí)常數(shù);+

,其中、AB為實(shí)常數(shù))。

 

參考書目:《高等數(shù)學(xué)》(第四、五版)  同濟(jì)大學(xué)數(shù)學(xué)教研室主編  高等教育出版社

公眾號

抖音

bilibili

微博

聯(lián)系我們

服務(wù)熱線:023-68141520
返回頂部
請選擇培訓(xùn)項(xiàng)目
專升本/專轉(zhuǎn)本/專接本 等級職稱/考研

操作成功

關(guān)閉