發(fā)布時間:2021/11/04 16:24:12 來源:易學仕專升本網(wǎng) 閱讀量:6202 熱點: 浙江專升本 2022浙江專升本考試科目
摘要:2022年浙江省專升本數(shù)學大綱有哪些內(nèi)容?在浙江專升本考試中理科類必考高等數(shù)學,由于22年浙江省專升本大綱還未公布,縱觀重慶、四川等地提前發(fā)布的考試大綱,內(nèi)容方面變化不大,而且浙江省近幾年考試大綱內(nèi)容也沒有太大的變動,因此小易認為22年數(shù)學大綱內(nèi)容改動不大,同學在復習時可以參考21年高數(shù)大綱復習。詳情如下:?
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念,會求函數(shù)的定義域、表達式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。
2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。
3.理解函數(shù)y=?(x)與其反函數(shù)之間的關系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。
4.掌握函數(shù)的四則運算與復合運算;掌握復合函數(shù)的復合過程。
5.掌握基本初等函數(shù)的性質(zhì)及其圖像。
6.理解初等函數(shù)的概念。
7.會建立一些簡單實際問題的函數(shù)關系式。
(二)極限
1.理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。
2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。
3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì),無窮小量與無窮大量的關系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。
4.理解極限存在的兩個收斂準則(夾逼準則與單調(diào)有界準則),掌握兩個重要極限:并能用這兩個重要極限求函數(shù)的極限。
(三)連續(xù)
1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關系。會判斷分段函數(shù)在分段點的連續(xù)性。
2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型。
3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。
4.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。
二、一元函數(shù)微分學
(一)導數(shù)與微分
1.理解導數(shù)的概念及其幾何意義,了解左導數(shù)與右導數(shù)的定義,理解函數(shù)的可導性與連續(xù)性的關系,會用定義求函數(shù)在一點處的導數(shù)。
2.會求曲線上一點處的切線方程與法線方程。
3.熟記導數(shù)的基本公式,會運用函數(shù)的四則運算求導法則,復合函數(shù)求導法則和反函數(shù)求導法則求導數(shù)。會求分段函數(shù)的導數(shù)。
4.會求隱函數(shù)的導數(shù)。掌握對數(shù)求導法與參數(shù)方程求導法。
5.理解高階導數(shù)的概念,會求一些簡單的函數(shù)的n階導數(shù)。
6.理解函數(shù)微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導的關系,會求函數(shù)的一階微分。
(二)中值定理及導數(shù)的應用
1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。
3.會利用導數(shù)判定函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,會利用函數(shù)的單調(diào)性證明一些簡單的不等式。
4.理解函數(shù)極值的概念,會求函數(shù)的極值和最值,會解決一些簡單的應用問題。
5.會判定曲線的凹凸性,會求曲線的拐點。
6.會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。
7.會描繪一些簡單的函數(shù)的圖形。
三、一元函數(shù)積分學
(一)不定積分
1.理解原函數(shù)與不定積分的概念及其關系,理解原函數(shù)存在定理,掌握不定積分的性質(zhì)。
2.熟記基本不定積分公式。
3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。
4.掌握不定積分的分部積分法。
5.會求一些簡單的有理函數(shù)的不定積分。
(二)定積分
1.理解定積分的概念與幾何意義,掌握定積分的基本性質(zhì)。
2.理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導的方法。
3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。
4.掌握定積分的換元積分法與分部積分法。
5.理解無窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無界函數(shù)的瑕積分的概念,掌握其計算方法。
6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積。
四、無窮級數(shù)
(一)數(shù)項級數(shù)
1.理解級數(shù)收斂、級數(shù)發(fā)散的概念和級數(shù)的基本性質(zhì),掌握級數(shù)收斂的必要條件。
3.理解任意項級數(shù)絕對收斂與條件收斂的概念。會用萊布尼茨(Leibnitz)判別法判別交錯級數(shù)的斂散性。
(二)冪級數(shù)
1.理解冪級數(shù)、冪級數(shù)收斂及和函數(shù)的概念。會求冪級數(shù)的收斂半徑與收斂區(qū)間。
2.掌握冪級數(shù)和、差、積的運算。
3.掌握冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì):和函數(shù)是連續(xù)的、和函數(shù)可逐項求導及和函數(shù)可逐項積分。
五、常微分方程
(一)一階常微分方程
1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。
2.掌握可分離變量微分方程與齊次方程的解法。
3.會求解一階線性微分方程。
(二)二階常系數(shù)線性微分方程
1.理解二階常系數(shù)線性微分方程解的結構。
2.會求解二階常系數(shù)齊次線性微分方程。
六、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。
2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。
3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。
(二)平面與直線
1.會求平面的點法式方程與一般式方程。會判定兩個平面的位置關系。
2.會求點到平面的距離。
3.會求直線的點向式方程、一般式方程和參數(shù)式方程。會判定兩條直線的位置關系。
4.會求點到直線的距離,兩條異面直線之間的距離。
5.會判定直線與平面的位置關系。
同學在復習高數(shù)時遇到困難,可以向升本成功的學姐學長請教學習經(jīng)驗,也可以向老師請教。如果同學自學能力較差,基礎較薄弱,可以選擇報浙江專升本網(wǎng)課,不僅有老師在線輔導,還有升本資料免費贈送,讓你省去在網(wǎng)上搜索資料的時間。
以上就是2022年浙江省專升本數(shù)學大綱有哪些內(nèi)容?的內(nèi)容分析,同學可以選擇考前一個月的時候做歷年真題,反復多刷幾遍,熟悉題型,減少錯題率,按照以往經(jīng)驗,歷年真題中都會出現(xiàn)一些原題,分值占比還不小。
浙江專升本的同學在考試之前一定要先做幾套歷年真題,知道浙江專升本的題型是怎樣的,以及分值占比的情況,今天小易就給大家整理了一下,希望同學在考試的時候能有所借鑒,幫助同學合理的安排做題時間。
浙江考試科目 2022/02/07
2022浙江專升本教育類考什么?可以報考的專業(yè)有哪些?
2022年浙江專升本專業(yè)對照表已經(jīng)公布,教育類考試科目是大學語文和英語,可以報考的專業(yè)有很多,比如熱門的小學教育、學前教育等。22年浙江專升本政策中提出可以跨專業(yè)報考,但是不能跨類別報考,因此大家在選擇前一...
浙江考試科目 2022/02/02
浙江省專升本考試是全省統(tǒng)考,不需要進行專業(yè)課考試,考試的科目也只有大學語文、英語、高數(shù)三科,具體的考試科目是按照專業(yè)類別進行劃分,詳情請往下看
浙江考試科目 2021/12/23
浙江專升本需要考些什么科目?目前河南、黑龍江等地專升本信息提前發(fā)布,不難看出,22年專升本考試提前已是大勢所趨,還有些同學不知道考試內(nèi)容,現(xiàn)在小易為大家整理了浙江專升本考什么,希望能對同學有所幫助。
浙江考試科目 2021/11/11
操作成功