專升本/專轉(zhuǎn)本/專接本
當(dāng)前位置: 易學(xué)仕在線> 考試資訊> 報考> 大綱> 安徽> 合肥學(xué)院2018年“專升本”計算機科學(xué)與技術(shù)專業(yè) 《高等數(shù)學(xué)》考試大綱

合肥學(xué)院2018年“專升本”計算機科學(xué)與技術(shù)專業(yè) 《高等數(shù)學(xué)》考試大綱

發(fā)布時間:2018/05/09 14:07:32 來源:易學(xué)仕專升本網(wǎng) 閱讀量:2486

摘要:合肥學(xué)院2018年“專升本”計算機科學(xué)與技術(shù)專業(yè) 《高等數(shù)學(xué)》考試大綱 一、課程的目的和任務(wù) 高等數(shù)學(xué)課程是高等學(xué)校非各專業(yè)學(xué)生一門必修的重要基礎(chǔ)課,通過本課程的學(xué)習(xí)要使學(xué)生獲得: 1)一元函數(shù)微積分學(xué); 2)常微分方程; 等方面的基本概

合肥學(xué)院2018年“專升本”計算機科學(xué)與技術(shù)專業(yè)

《高等數(shù)學(xué)》考試大綱

一、課程的目的和任務(wù)

    高等數(shù)學(xué)課程是高等學(xué)校非各專業(yè)學(xué)生一門必修的重要基礎(chǔ)課,通過本課程的學(xué)習(xí)要使學(xué)生獲得:

      1)一元函數(shù)微積分學(xué);

      2)常微分方程;

等方面的基本概念、基本理論和基本運算技能。

高等數(shù)學(xué)課程在傳授以上五方面的基本概念、基本理論和基本運算技能的同時,要通過         各個教學(xué)環(huán)節(jié)逐步培養(yǎng)學(xué)生具有抽象概括問題的能力、邏輯推理能力和自學(xué)能力,還要特別注意培養(yǎng)學(xué)生具有比較熟練的運算能力和綜合運用所學(xué)知識去分析問題和解決實際問題的能力,從而使學(xué)生具有一定的數(shù)學(xué)素養(yǎng)。

二、課程的基本要求和特點

    本課程要求學(xué)生通過學(xué)習(xí)獲得:

      1)一元函數(shù)微積分學(xué);

      2)常微分方程;

等方面的基本概念、基本理論和比較熟練的運算能力以及綜合運用所學(xué)知識去分析問題和解決實際問題的能力。

本課程具有抽象性與科學(xué)性、較強的邏輯性及應(yīng)用的廣泛性的特點。

三、課程的考試主要內(nèi)容

第一章:函數(shù)、極限與連續(xù)函數(shù)

主要內(nèi)容:

    1.函數(shù)的概念(定義、表示法),函數(shù)的幾種特性,反函數(shù),復(fù)合函數(shù),初等函數(shù)。

2. 數(shù)列極限的概念,函數(shù)極限的概念(x→xo與x→∞時函數(shù)的極限),函數(shù)極限與無窮小的關(guān)系,無窮小性質(zhì),極限四則運算法則,兩個極限存在準(zhǔn)則:夾逼準(zhǔn)則和單調(diào)有界準(zhǔn)則,兩個重要極限的結(jié)果:=1,=e,無窮小量的比較。

3. 連續(xù)函數(shù)的概念,函數(shù)的間斷點,連續(xù)函數(shù)的四則運算,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(敘述)。

    考核要求:

    1.理解函數(shù)的概念。

    2.了解函數(shù)奇偶性、單調(diào)性、周期性和有界性,了解反函數(shù)的概念,理解復(fù)合函數(shù)的概念。

    3.會列出簡單實際問題中的函數(shù)關(guān)系。

    4. 了解極限的概念,掌握極限四則運算法則。

    5.了解兩個極限存在準(zhǔn)則(夾逼準(zhǔn)則和單調(diào)有界準(zhǔn)則),會用兩個重要極限求極限。

    6.了解無窮小、無窮大的概念。

    7.了解函數(shù)在一點連續(xù)的概念和在區(qū)間上連續(xù)的概念,

    8.了解間斷點的概念,并會判別間斷點的類型。

9.了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(介值定理和最大值最小值定理)。

 

第二章:導(dǎo)數(shù)與微分

主要內(nèi)容:

    1.導(dǎo)數(shù)的概念(定義、幾何意義、幾何應(yīng)用),函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系,函數(shù)的和、差、積、商的導(dǎo)數(shù),復(fù)合函數(shù)與反函數(shù)的導(dǎo)數(shù),基本初等函數(shù)的導(dǎo)數(shù)公式,初等函數(shù)的求導(dǎo)問題,高階導(dǎo)數(shù),隱函數(shù)求導(dǎo)法,對數(shù)求導(dǎo)法。

2.微分的概念,微分運算法則,微分在近似計算中的應(yīng)用。

    考核要求:

    1.了解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)的幾何意義,了解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。

    2.熟練掌握導(dǎo)數(shù)和微分的運算法則和基本初等函數(shù)導(dǎo)數(shù)的基本公式。

    3.了解高階導(dǎo)數(shù)的概念。

    4.掌握求簡單復(fù)合函數(shù)一階、二階導(dǎo)數(shù)的方法。

5.會求隱函數(shù)和參數(shù)式所確定的函數(shù)的一階導(dǎo)數(shù)。

 

第三章:中值定理與導(dǎo)數(shù)的應(yīng)用

主要內(nèi)容:

1.中值定理(羅爾、拉格朗日、柯西定理),洛必達法則,泰勒中值定理.       

2. 導(dǎo)數(shù)的應(yīng)用:函數(shù)單調(diào)性的判定法,函數(shù)的極值,判斷函數(shù)圖形的凹凸性,求拐

點,最大值與最小值問題及其求法,描繪函數(shù)的圖形(包括水平與垂直漸近線)。

    考核要求:

1.了解羅爾(Ro11e)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylor)定理。

2.了解洛必達(L’Hospital)法則,掌握洛必達(L’Hospital)法則求極限的方法。

3.理解函數(shù)的極值概念,掌握判斷函數(shù)增減性的方法,掌握求極值的方法;會判斷函數(shù)圖形的凹凸性,會求拐點,會描繪函數(shù)的圖形(包括水平和鉛直漸近線)。會求解較簡單的最大值和最小值的應(yīng)用問題,會利用導(dǎo)數(shù)證明一些不等式。

  

第四章:不定積分

主要內(nèi)容:

1. 原函數(shù)與不定積分的定義,不定積分性質(zhì)、基本積分公式.

2. 換元積分法,分部積分法,有理函數(shù)及三角函數(shù)有理式積分的舉例,積分表用法。

考核要求:

    1.理解不定積分的概念及性質(zhì)。

    2.熟悉不定積分的基本公式,掌握不定積分的換元法和分部積分法。

3.會求較簡單的有理函數(shù)和三角函數(shù)有理式的積分。

 

第五章:定積分及其應(yīng)用

主要內(nèi)容:

1.定積分的概念與性質(zhì),定積分中值定理.

2. 定積分作為變上限的函數(shù)及其求導(dǎo)定理,牛頓—萊布尼茨公式。

3. 定積分的換元法與分部積分法,

4. 定積分在幾何上的應(yīng)用(如面積、體積和弧長等求法)。

5. 定積分在物理上的應(yīng)用(如功、水壓力、引力等求法)。

考核要求:

    1.了解定積分的概念及性質(zhì)。

    2.了解變上限的定積分作為其上限的函數(shù),掌握變上限定積分的求導(dǎo)公式,熟悉牛頓(Newton)一萊布尼茨(Leibniz)公式。

3. 掌握定積分的換元法和分部積分法

4.了解定積分的元素法。

5.掌握定積分在幾何上的應(yīng)用方法(如面積、體積和弧長等求法)。

6.了解定積分在物理上的應(yīng)用方法(如功、水壓力、引力等求法)。

 

第六章:微分方程

主要內(nèi)容:

    1.微分方程的基本概念。

    2.一階微分方程:可分離變量的微分方程,齊次方程,線性方程。

    3.可降階的高階微分方程:=f(x),y”=f(x,y’),y”=f(y,y’)。

4.二階常系數(shù)齊次線性微分方程,二階常系數(shù)非齊次線性微分方程。

考核要求:

    1.了解微分方程、解、通解、初始條件和特解等概念。

    2.掌握變量可分離方程及一階線性微分方程的解法,會解齊次方程。

    3.了解=f(x),y”=f(x,y’)和y”=f(y,y’)的降階法。

    4.了解二階線性微分方程解的結(jié)構(gòu)。

    5.掌握二階常系數(shù)齊次線性微分方程的解法。

    6.會求自由項形如:的二階常系數(shù)非齊次線性微分方程。

7.會用微分方程解一些簡單的幾何和物理問題。

   四、教材及主要參考書

   《高等數(shù)學(xué)》(本科少學(xué)時)上、下冊 (第二版) 同濟大學(xué)數(shù)學(xué)教研室 高等教育出版社

或 《高等數(shù)學(xué)》上、下冊(第五版) 同濟大學(xué)數(shù)學(xué)教研室  高等教育出版社

或 《高等數(shù)學(xué)》上、下冊  侯云暢主編  高等教育出版社

五、考試形式和試卷結(jié)構(gòu)

1、答卷方式:

閉卷。

2、考試題型

   (1)單項選擇題;

   (2)填空題;

   (3)證明題;

   (4)計算題.

 


公眾號

抖音

bilibili

微博

聯(lián)系我們

服務(wù)熱線:023-68141520
返回頂部
請選擇培訓(xùn)項目
專升本/專轉(zhuǎn)本/專接本 等級職稱/考研

操作成功

關(guān)閉