專升本/專轉(zhuǎn)本/專接本
當前位置: 易學仕在線> 考試資訊> 報考> 大綱> 江西> 華東交通大學理工學院2020年普通專升本《高等數(shù)學》考試大綱

華東交通大學理工學院2020年普通專升本《高等數(shù)學》考試大綱

發(fā)布時間:2020/06/15 13:21:46 來源:易學仕專升本網(wǎng) 閱讀量:1944

摘要:華東交通大學理工學院2020年普通專升本《高等數(shù)學》考試大綱

一、參考教材

《高等數(shù)學》(上、下冊)第六版 同濟大學應用數(shù)學系編 高等教育出版社。

 

二、考試題型

1.選擇題;2.填空題;3.計算題;4.綜合(證明)題。

 

三、考試方式、時間及總分

考試方式:閉卷考試; 考試時間:120 分鐘; 總分:150 分。

 

四、主要內(nèi)容

1.函數(shù)與極限

函數(shù);數(shù)列的極限;函數(shù)的極限;無窮小與無窮大;極限運算法則; 極限存在準則;兩個重要極限;無窮小的比較;函數(shù)的連續(xù)性與間斷點; 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

2.導數(shù)與微分

導數(shù)的概念及其性質(zhì);函數(shù)的和、差、積、商的求導法則;復合函數(shù)的求導法則;基本求導法則與導數(shù)公式;高階導數(shù);隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導數(shù);函數(shù)的微分。

3.微分中值定理與導數(shù)的應用

微分中值定理;洛必達法則;函數(shù)的單調(diào)性與曲線的凹凸性;函數(shù)的極值與最大值、最小值;函數(shù)圖形的描繪。

4.不定積分

不定積分的概念與性質(zhì);換元積分法;分部積分法。

5.定積分

定積分的概念與性質(zhì);微積分基本公式;定積分的換元法及分部積分法。

6.定積分的應用

定積分在幾何上的應用。

7.微分方程

微分方程的基本概念;可分離變量的微分方程;齊次方程;一階線性微分方程;可降解的高階線性微分方程;二階常系數(shù)齊次線性微分方程。

8.向量代數(shù)與空間解析幾何

向量及其線性運算;點的坐標與向量的坐標;數(shù)量積與向量積;平面及其方程;空間直線及其方程。

9.多元函數(shù)微分法及其應用

多元函數(shù)的基本概念;偏導數(shù);全微分;多元復合函數(shù)的求導法則; 隱函數(shù)的求導公式;多元函數(shù)的極值及最大值、最小值。

10.重積分

二重積分的概念與性質(zhì);二重積分的計算。

11.無窮級數(shù)

常數(shù)項級數(shù)的概念與性質(zhì);常數(shù)項級數(shù)的審斂法;冪級數(shù)。

 

五、基本要求

1.函數(shù)與極限

1)理解函數(shù)的概念;熟練掌握函數(shù)的四種特性;會求單調(diào)函數(shù)的反函數(shù);會建立簡單問題的函數(shù)關(guān)系式。

2)了解數(shù)列極限的定義;熟練掌握數(shù)列極限的計算。

3)了解函數(shù)極限的定義;熟練掌握極限的四則運算法則;理解無窮小與無窮大的概念;掌握無窮小的性質(zhì)與無窮小的比較;熟練掌握極限的收斂準則;熟練掌握兩個重要極限。

4)了解函數(shù)的連續(xù)性;了解連續(xù)與極限的關(guān)系;了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì);會求一般函數(shù)的間斷點。

2.導數(shù)與微分

1)理解導數(shù)的定義與幾何意義;了解可導與連續(xù)的關(guān)系;會求曲線的切線方程和法線方程。

2)熟練掌握函數(shù)四則運算的求導法則和復合函數(shù)的求導法則;熟練掌握求導基本公式;會求反函數(shù)的導數(shù);掌握隱函數(shù)的導數(shù)、由參數(shù)方程所確定的函數(shù)的導數(shù)。了解高階導數(shù),熟練掌握二階導數(shù)。

3)理解微分的概念,了解微分與可導的關(guān)系掌握微分的基本公式和運算法則。

3.微分中值定理與導數(shù)的應用

1)理解羅爾定理、拉格朗日中值定理,會驗證羅爾定理和拉格朗日中值定理。

2)熟練掌握羅必達法則。熟練掌握函數(shù)的單調(diào)性、曲線的凹凸性和拐點,會求函數(shù)的極值和最值。

3)了解利用導數(shù)作函數(shù)圖象,會求曲線的漸近線。

4.不定積分

1)理解原函數(shù)與不定積分的定義與性質(zhì),熟練掌握不定積分的基本公式。

2)熟練掌握不定積分的換元積分法和分部積分法。

3)了解有理函數(shù)和三角有理式的積分。

5.定積分及其應用

1)理解定積分的定義及其性質(zhì),掌握定積分的幾何意義。

2)熟練掌握積分變上限函數(shù)、牛頓—萊布尼茲公式。

3)熟練掌握定積分的換元積分法和分部積分法。

6.定積分的應用

了解定積分的元素法,熟練掌握平面圖形的面積和旋轉(zhuǎn)體的體積的計算。

7.微分方程

1)了解微分方程的概念,熟練掌握可分離變量的微分方程和一階線性微分方程的解。

2)熟練掌握二階常系數(shù)線性微分方程解的結(jié)構(gòu);會求二階常系數(shù)齊次線性微分方程。

8.向量代數(shù)與空間解析幾何

1)了解向量的概念,熟練掌握向量的加減、數(shù)乘向量、向量的數(shù)量積和向量積。

2)熟練掌握平面方程和直線方程的幾種形式,會求平面和直線的方程。

9.多元函數(shù)微分法及其應用

1)了解多元函數(shù)、多元函數(shù)的極限和連續(xù)性的概念。

2)了解多元函數(shù)偏導數(shù)的概念,熟練掌握多元函數(shù)的偏導數(shù)和二階偏導數(shù)。

3)熟練掌握多元函數(shù)的全微分,會求多元復合函數(shù)和隱函數(shù)的偏導數(shù)。

4)熟練掌握多元函數(shù)的極值及最大值、最小值,條件極值。

10.重積分

1)理解二重積分的定義及其性質(zhì)。

2)熟練掌握二重積分在直角坐標系和極坐標系中的計算。

11.無窮級數(shù)

1)了解數(shù)項級數(shù)的概念及其性質(zhì)。

2)熟練掌握正項級數(shù)、交錯級數(shù)的審斂法,掌握絕對收斂和條件收斂的概念。

3)了解函數(shù)項級數(shù)的概念,會求簡單函數(shù)展成冪級數(shù),會求冪級數(shù)的收斂區(qū)間。

 

推薦閱讀

華東交通大學理工學院2020年普通專升本《管理學原理》考試大綱

公眾號

抖音

bilibili

微博

聯(lián)系我們

服務熱線:023-68141520
返回頂部
請選擇培訓項目
專升本/專轉(zhuǎn)本/專接本 等級職稱/考研

操作成功

關(guān)閉